Conserved roles for yeast Rho1 and mammalian RhoA GTPases in clathrin-independent endocytosis
نویسندگان
چکیده
Eukaryotic cells use numerous endocytic pathways for nutrient uptake, protein turnover and response to the extracellular environment. While clathrin-mediated endocytosis (CME) has been extensively studied in yeast and mammalian cells, recent studies in higher eukaryotes have described multiple clathrin-independent endocytic pathways that depend upon Rho family GTPases and their effector proteins. In contrast, yeast cells have been thought to rely solely on CME. In a recent study, we used CME-defective yeast cells lacking clathrin-binding endocytic adaptor proteins in a genetic screen to identify novel factors involved in endocytosis. This approach revealed the existence of a clathrin-independent endocytic pathway involving the GTPase Rho1, which is the yeast homolog of RhoA. Further characterization of the yeast Rho1-mediated endocytic pathway suggested that the Rho1 pathway requires additional proteins that appear to play conserved roles in RhoA-dependent, clathrin-independent endocytic pathways in mammalian cells. Here, we discuss the parallels between the yeast Rho1-dependent and mammalian RhoA-dependent endocytic pathways, as well as the applications of yeast as a model for studying clathrin-independent endocytosis in higher eukaryotes.
منابع مشابه
Existence of a novel clathrin-independent endocytic pathway in yeast that depends on Rho1 and formin
Yeast is a powerful model organism for dissecting the temporal stages and choreography of the complex protein machinery during endocytosis. The only known mechanism for endocytosis in yeast is clathrin-mediated endocytosis, even though clathrin-independent endocytic pathways have been described in other eukaryotes. Here, we provide evidence for a clathrin-independent endocytic pathway in yeast....
متن کاملSyp1 regulates the clathrin-mediated and clathrin-independent endocytosis of multiple cargo proteins through a novel sorting motif
Internalization of proteins from the plasma membrane (PM) allows for cell-surface composition regulation, signaling of network modulation, and nutrient uptake. Clathrin-mediated endocytosis (CME) is a major internalization route for PM proteins. During CME, endocytic adaptor proteins bind cargoes at the cell surface and link them to the PM and clathrin coat. Muniscins are a conserved family of ...
متن کاملExpression of the Salmonella Spp. Virulence Factor SifA in Yeast Alters Rho1 Activity on Peroxisomes
The Salmonella typhimurium effector protein SifA regulates the assembly and tubulation of the Salmonella phagosome. SifA localizes to the phagosome and interacts with the membrane via its prenylated tail. SifA is a structural homologue of another bacterial effector that acts as a GTP-exchange factor for Rho family GTPases and can bind GDP-RhoA. When coexpressed with a bacterial lipase that is a...
متن کاملEndocytic accessory factors and regulation of clathrin-mediated endocytosis.
Up to 60 different proteins are recruited to the site of clathrin-mediated endocytosis in an ordered sequence. These accessory proteins have roles during all the different stages of clathrin-mediated endocytosis. First, they participate in the initiation of the endocytic event, thereby determining when and where endocytic vesicles are made; later they are involved in the maturation of the clath...
متن کاملYeast Irc6p is a novel type of conserved clathrin coat accessory factor related to small G proteins
Clathrin coat accessory proteins play key roles in transport mediated by clathrin-coated vesicles. Yeast Irc6p and the related mammalian p34 are putative clathrin accessory proteins that interact with clathrin adaptor complexes. We present evidence that Irc6p functions in clathrin-mediated traffic between the trans-Golgi network and endosomes, linking clathrin adaptor complex AP-1 and the Rab G...
متن کامل